Orthogonalsystem

Orthogonalsystem
Orthogonalsystem,
 
Funktionalanalysis: eine Menge von Elementen xi (i Element einer abzählbaren Indexmenge I ) eines Hilbert-Raumes H, die paarweise zueinander orthogonal sind. Ist zusätzlich die Norm all dieser Elemente 1, so spricht man von einem normierten Orthogonalsystem oder Orthonormalsystem (oder einer Hilbert-Raum-Basis). Folgende Aussagen sind zueinander äquivalent und werden als Vollständigkeit des Orthogonalsystems bezeichnet:
 
1) Es gibt kein von null verschiedenes Element x in H mit strong>x, xi = 0 für alle i.
 
2) Es gilt die parsevalsche Gleichung wobei ||x|| die Norm von x ist.
 
3) Für beliebiges xH existiert die Fourier-Entwicklung
 
Jeder Hilbert-Raum besitzt ein vollständiges Orthogonalsystem. Den Übergang zu einem Orthonormalsystem bezeichnet man als Orthonormierung. (schmidtsches Orthonormierungsverfahren)

Universal-Lexikon. 2012.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Orthogonalsystem — In der Linearen Algebra und der Funktionalanalysis, Teilgebieten der Mathematik, ist ein Orthogonalsystem eine Menge von Vektoren eines Vektorraums mit Skalarprodukt (Prähilbertraum), die bestimmte Eigenschaften erfüllt. Inhaltsverzeichnis 1… …   Deutsch Wikipedia

  • Gram-Schmidt — Das Gram Schmidtsche Orthogonalisierungsverfahren ist ein Algorithmus aus dem mathematischen Teilgebiet der linearen Algebra. Er erzeugt zu jedem System linear unabhängiger Vektoren aus einem Prähilbertraum, d. h. einem Vektorraum mit… …   Deutsch Wikipedia

  • Gram-Schmidt-Orthogonalisierung — Das Gram Schmidtsche Orthogonalisierungsverfahren ist ein Algorithmus aus dem mathematischen Teilgebiet der linearen Algebra. Er erzeugt zu jedem System linear unabhängiger Vektoren aus einem Prähilbertraum, d. h. einem Vektorraum mit… …   Deutsch Wikipedia

  • Gram-Schmidt-Prozess — Das Gram Schmidtsche Orthogonalisierungsverfahren ist ein Algorithmus aus dem mathematischen Teilgebiet der linearen Algebra. Er erzeugt zu jedem System linear unabhängiger Vektoren aus einem Prähilbertraum, d. h. einem Vektorraum mit… …   Deutsch Wikipedia

  • Gram-Schmidt-Verfahren — Das Gram Schmidtsche Orthogonalisierungsverfahren ist ein Algorithmus aus dem mathematischen Teilgebiet der linearen Algebra. Er erzeugt zu jedem System linear unabhängiger Vektoren aus einem Prähilbertraum, d. h. einem Vektorraum mit… …   Deutsch Wikipedia

  • Gram-Schmidtsche Orthonormalisierungsverfahren — Das Gram Schmidtsche Orthogonalisierungsverfahren ist ein Algorithmus aus dem mathematischen Teilgebiet der linearen Algebra. Er erzeugt zu jedem System linear unabhängiger Vektoren aus einem Prähilbertraum, d. h. einem Vektorraum mit… …   Deutsch Wikipedia

  • Gram-Schmidtsches Orthonormalisierungsverfahren — Das Gram Schmidtsche Orthogonalisierungsverfahren ist ein Algorithmus aus dem mathematischen Teilgebiet der linearen Algebra. Er erzeugt zu jedem System linear unabhängiger Vektoren aus einem Prähilbertraum, d. h. einem Vektorraum mit… …   Deutsch Wikipedia

  • Gram Schmidt — Das Gram Schmidtsche Orthogonalisierungsverfahren ist ein Algorithmus aus dem mathematischen Teilgebiet der linearen Algebra. Er erzeugt zu jedem System linear unabhängiger Vektoren aus einem Prähilbertraum, d. h. einem Vektorraum mit… …   Deutsch Wikipedia

  • Orthonormalisierung — Das Gram Schmidtsche Orthogonalisierungsverfahren ist ein Algorithmus aus dem mathematischen Teilgebiet der linearen Algebra. Er erzeugt zu jedem System linear unabhängiger Vektoren aus einem Prähilbertraum, d. h. einem Vektorraum mit… …   Deutsch Wikipedia

  • Orthonormierung — Das Gram Schmidtsche Orthogonalisierungsverfahren ist ein Algorithmus aus dem mathematischen Teilgebiet der linearen Algebra. Er erzeugt zu jedem System linear unabhängiger Vektoren aus einem Prähilbertraum, d. h. einem Vektorraum mit… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”